1) Use the chain rule to find $\frac{dz}{dt}$.

a)
$$z = x^2y + xy^2$$
, $x = 2 + t^4$, $y = 1 - t^3$

b) $z = \sin x \cos x$, $x = \pi t$, $y = \sqrt{t}$

2) Use the chain rule to find $\frac{dw}{dt}$.

a)
$$w = xe^{y/z}$$
, $x = t^2$, $y = 1 - t$, $z = 1 + 2t$

b) $w = xy + yz^2$, $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$

3) Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

a)
$$z = x^2 + xy + y^2$$
, $x = s + t$, $y = st$

b) $z = \sin \alpha \tan \beta$, $\alpha = 3s + t$, $\beta = s - t$

4) Let W(s,t) = F(u(s,t),v(s,t)), where F, u, and v are differentiable, use the table of values to find $W_s(1,0)$ and $W_t(1,0)$.

	и	u_s	u_{t}	ν	V_s	v_t	F_{u}	F_{ν}
(1,0)	2	-2	6	3	5	4	-1	10

5) Use a tree diagram to write out the chain rule for: v = f(p,q,r) where, p = p(x,y,z), q = q(x,y,z), r = r(x,y,z) assume all functions are differentiable.

6) Differentiate implicitly to find $\frac{dy}{dx}$.

a)
$$x^2 - xy + y^2 - x + y = 0$$

b) $\cos(x-y) = xe^y$

7) Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

a)
$$x^2 + y^2 + z^2 = 3xyz$$

b) $xyz = \cos(x + y + z)$

8) The radius of a right circular cylinder is increasing at a rate of 6 inches per minute, and the height is decreasing at a rate of 4 inches per minute. What are the rates of change of the volume and surface area when the radius is 12 inches and the height is 36 inches?

9) Suppose z = f(x, y), where x = g(s, t) and y = h(s, t), find and expression for $\frac{\partial^2 z}{\partial t^2}$.